Las 17 ecuaciones que cambiaron el mundo

¿Sabes el origen de la palabra ecuación?  Viene del latín aequatio y significa nivelación, igualación o repartición igual de algo. Comparte su raíz con otras palabras que tienen significados parecidos: ecuánime, equilibrio, Ecuador, equitativo, etc.

Cicerón,  jurista, político, filósofo, escritor y orador romano, la utiliza por primera vez para expresar la situación de igualdad entre lo que uno tiene de saldo y lo que adeuda de un crédito. Es decir, una manera de expresar dos realidades que matemáticamente son iguales. A partir de ahí, se ha usado en el campo de la álgebra matemática para denominar todas las igualdades en las que puede despejarse cualquier incógnita a partir de la relación de igualdad.

¿Cuáles son las 17 ecuaciones que nos han permitido cambiar el mundo y conocer realidades que nunca antes habíamos visto? Pasen y vean.

Advertisements

El interés por aprender inglés crece, según Google

En Google Trends, se pueden descubrir las tendencias de búsqueda de cualquier término en Google desde que esta herramienta de búsqueda fue creada (en 2004). Es muy interesante ver la evolución del interés por algunas materias. Por ejemplo, he buscado el concepto “inglés” del 2004 hasta hoy en España, y el resultado es éste:

El interés por aprender inglés según Google Trends (Fuente: trends.google.com)

El interés por aprender inglés según Google Trends (Fuente: trends.google.com)

Vemos cómo durante la crisis, entiendo las preocupaciones de la gente estaban en otros asuntos. Pero una vez que la dejamos atrás, la gente se vuelve a interesar. Es más, si empezáis a escribir en Google “Por qué aprender inglés…”, ya veis que nos recomienda incluso hacer desde bien jóvenes. Nos lo recomienda, porque mucha gente lo busca.

"Por qué aprender inglés", según Google

“Por qué aprender inglés”, según Google

¿Por qué es interesante hacerlo desde pequeños? De nuevo, según Google, nos ofrece los siguientes ocho motivos:

  • Es imprescindible para trabajar.
  • Es el idioma universal.
  • Te abrirá a nuevas culturas.
  • Viajarás sin problemas.
  • Es el idioma más aprendido.
  • Para superarte a ti mismo.
  • Arte y literatura anglófona.
  • Elimina debilidades.

En Academia Ukajerez estaremos encantados de ayudarte en ello. Ya sabes, escríbenos o visítanos para que podamos ayudarte a aprender inglés desde pequeño/a, y así poder dominar el idioma que en un mundo tan globalizado parece tanto vamos a necesitar.

Novedades curso 2018/2019: Dibujo Técnico y mucho más!

Como os anunciamos hace unos días, este curso tenemos novedades en Academia Ukajerez. Además de ofreceros las ventajas de todos los años (grupos reducidos, combinación de asignaturas, matrícula gratis, descuentos especiales, etc.), este curso abrimos nuevo grupo y aula con Dibujo Técnico.

Sois muchos y muchas las que durante estos años nos habéis estado preguntando por ello, así que finalmente nos hemos animado. Una asignatura que nos suele costar sacar adelante, y en la que en muchas ocasiones queréis combinar con otras materias. Por ello, te ofrecemos todas esas opciones en nuestra academia. Abajo, te dejamos todos los datos sobre nuestras diferentes asignaturas y niveles educativos.

A partir de mañana 3 de septiembre, te esperamos a las 16:00.

Academia Ukajerez (www.ukajerez.es)

Academia Ukajerez (www.ukajerez.es)

Uka Jerez Akademia (www.ukajerez.es)

Uka Jerez Akademia (www.ukajerez.es)

La física, las ondas gravitacionales y Einstein

Esta semana hemos abierto una nueva era en el conocimiento que tenemos del universo. Lo que Einstein proponía en 1916, según su Teoría General de la Relatividad, era que los cuerpos más violentos del universo liberaban parte de su masa en forma de energía a través de estas ondas gravitacionales (la fórmula que nos acompaña como cabecera hoy). Éstas, constituyen vibraciones en el espacio-tiempo, el material del que está hecho todo el universo. Eventos del cosmos como las explosiones de estrellas o las colisiones de agujeros negros. El problema era que Einstein pensó que dado que se originaban demasiado lejos de la tierra, no seríamos capaces de percibirlas.

Sin embargo, un grupo de científicos ha sido capaz de percibirlas. Y de esta manera, hemos confirmado otra pieza más de la física para entender este universo que nos rodea. Hasta la fecha, toda la información que teníamos del cosmos (recordemos que solo conocemos el 5%) se debe a la luz en sus diferentes longitudes de onda. Es decir, siempre hemos observado el universo a través de la luz.

Pues este espectro “visible” (como su propio apellido indica) ahora tendrá una nueva dimensión. Las ondas gravitacionales dan un sentido más y permiten saber qué está sucediendo donde no podemos percibir a través del ojo humano. Por ejemplo, lo que ocurre en un agujero negro. De hecho, el experimento que ha permitido este descubrimiento (que se produjo el pasado 14 de Septiembre de 2015), se produjo gracias a una colisión masiva de dos agujeros negros que tuvo lugar hace 1.300 millones de años. Tras esto, una masa superior hasta en tres veces la de nuestro Sol, se convirtió en energía. Como decíamos al comienzo, “los cuerpos más violentos del universo liberaban parte de su masa en forma de energía a través de estas ondas gravitacionales“.

Pero, ¿y por qué es tan relevante este descubrimiento? Pues porque todo objeto con energía en el universo, produce estas ondas. Un avión, cuando yo estoy corriendo o bailando, dos perros que juegan mientras se pelean, etc. El problema es que estas ondas son insignificantes en el conjunto del universo, por lo que son indetectables. Por lo que para localizarlas, hay que ir a fenómenos muy grandes, como la descomposición de estrellas, el choque de agujeros negros, etc.

Y, de esta manera, con las ondas gravitacionales, se conseguirá lo que los físicos y astrónomos más ansían: información. La que permite evolucionar el conocimiento del universo y por lo tanto, nuestro bienestar y el de nuestra humanidad. Y es que la física, como dice su definición:

Ciencia que estudia las propiedades de la materia y de la energía y establece las leyes que explican los fenómenos naturales, excluyendo los que modifican la estructura molecular de los cuerpos.

Por lo tanto, permite conocernos mejor, y permite conocer mejor por qué estamos aquí y de dónde venimos. Y en definitiva, preocuparnos hasta donde podremos llegar.

Aprendamos matemáticas para leer bien los periódicos y ahorrar dinero en lotería

Que las matemáticas son fundamentales ya lo hemos comentado con anterioridad. Sin embargo, parece que otros no lo tienen tan claro. Basta en muchas ocasiones abrir el periódico para darse cuenta de ello. Miremos dos titulares de periódico para darnos cuenta de ello:

Hace unos años, el matemático estadounidense John Allen Paulos escribió un libro que título El hombre anumérico. Es un libro que no me cansaré de recomendarle. Y me he acordado de él encontrando esos dos titulares. En ese libro, Paulos destacaba como que si una persona no tiene conocimientos matemáticos o numéricos, será más manipulable. Y es lo que en cierto modo ocurre con titulares como ese.

Veamos el primer titular. Si uno lo lee, quedándose con la literalidad de lo que expresa, se puede pensar que en Andalucía, Cataluña y Madrid, están todo el día hipotecándose. O que les encanta endeudarse. No obstante, una mente numérica como la que espero que ustedes tengan, enseguida pensaría que es absolutamente normal que así sea, dado que son las Comunidades Autónomas donde más españoles viven. En Andalucía viven 8.402.305 personas (un 17,96% del total), en Cataluña 7.518.903 personas (un 16,08 % del total de los Españoles) y en Madrid 6.454.440 personas (un 13,80% del total). Por lo tanto, en términos matemáticos, es normal y lógico que sea donde más hipotecas se soliciten. Lo raro, o lo que debería ser noticia, es si ocurriese lo contrario.

En segundo lugar, la famosa lotería de Doña Manolita. Fíjense en la siguiente fotografía:

Colas organizadas a la puerta de la lotería de Doña Manolita (Fuente: http://josemanuelvega.files.wordpress.com/2012/11/doncc83amanolita.jpg)

Colas organizadas a la puerta de la lotería de Doña Manolita (Fuente: http://josemanuelvega.files.wordpress.com/2012/11/doncc83amanolita.jpg)

Seguramente, esa gente compartirá el titular del periódico anterior que manifestaba como comprar un décimo a Doña Manolita es más seguro que te toque “porque ahí cae mucho“. Esta aberración matemática se debe a la falsa creencia de que la “suerte” se distribuye por designios del azar y que hay gente con más suerte que otros. Y al parecer, Doña Manolita es una de ellas. Sin embargo, lo que no tienen en cuenta es la enorme cantidad de números de lotería que despacha esa administración de lotería, y que por lo tanta, hace aumentar las probabilidades que ahí te toque.

Como decíamos, las matemáticas, nos ayudan a desenvolvernos en nuestro día a día con mucha más facilidad. Leer los periódicos con rigurosidad y ahorrarnos dinero en lotería está en nuestras manos: aprendamos matemáticas 🙂

¿Cuál es la probabilidad que otro niño en una fiesta de cumple haya nacido el mismo día que nosotros?

Una de las situaciones que más nos gusta vivir y comentar es cuando conocemos a alguien que ha nacido el mismo día que nosotros. Automáticamente, lo primero que decimos es “¡¡Vaya coincidencia!!”. Queriendo, en cierto modo, alertar sobre lo “afortunados” que son los coincidentes. En muchas ocasiones, incluso se genera un sentimiento de cercanía y familiaridad.

Sin embargo, esta situación no es tan “rara” como parece. Es decir, que la probabilidad de que ocurra ese escenario de coincidencia, no es tan “extraordinario” o excepcional. Pensemos en un ejemplo.

Invitados a una fiesta de cumpleaños: ¿qué probabilidad hay de haber nacido el mismo día? (Fuente: https://i1.wp.com/entrepadres.imujer.com/sites/entrepadres.imujer.com/files/Importancia-de-las-fiestas-de-cumpleanos-infantiles-3.jpg)

Invitados a una fiesta de cumpleaños: ¿qué probabilidad hay de haber nacido el mismo día? (Fuente: http://entrepadres.imujer.com/sites/entrepadres.imujer.com/files/Importancia-de-las-fiestas-de-cumpleanos-infantiles-3.jpg)

Imaginaros un cumpleaños en el que os juntáis 25 personas. Y de repente, dos de ellos se ponen a hablar y se dan cuenta que han nacido el mismo día. La probabilidad de que este suceso ocurra puede resultarnos muy baja, dado que en un año hay 365 o 366 fechas posibles (si es o no bisiesta). Sin embargo, a nivel probabilístico, el suceso no es tan poco probable.

La que se conoce como la paradoja del cumpleaños establece que si hay 23 personas reunidas hay una probablidad del 50,7% de que al menos dos personas de ellas cumplan años el mismo día. Para 60 o más personas la probabilidad es mayor del 99%. Y casi del 100% para 366 personas (teniendo en cuenta los años bisiestos).

El problema puede generalizarse para una reunión de n personas y formular la probabilidad de que al menos dos de ellas cumplan años el mismo día a través de la siguiente fórmula que calcula ese % de probabilidad de coincidencia:

Es decir, aplicamos la regla de Laplace, es decir, el cociente el número de casos favorables y los posibles. En este caso:

  • Número de Casos favorables: como la primera de las personas puede haber nacido uno de los 365 días del año, la siguiente unos de los 364 días restantes y así sucesivamente, resultan 365 × 364 × 363 × 362 × 361 x … x 341 = 4.9215439 x 10e63 casos de que no existan dos personas que hayan nacido el mismo día .
  • Número de Casos posibles de celebración de cumpleaños, suponiendo el año de 365 días, es: 36525 = 1,1410945 x 10e64

Es decir, que aplicando la regla de Laplace, nos quedaría que la probabiliad de que no coincidan sería: P(Ac) =casos favorables/casos posibles = 0,4915 / 1,14 = 0,4311

Por lo tanto, la probabilidad de que sí coincidan, quedaría formulado de la siguiente manera: p(A) = 1 – p(Ac) = 1 – 0,4311 = 0,5689, es decir, un 56,9%. 

Esto, representado gráficamente, quedaría tal y como sigue:

Es decir, la próxima vez que vayáis a un cumpleaños, y haya 25 personas, pensad que la probabilidad que haya otra persona que haya nacido el mismo día que vosotros es del 56.9%. Esto es una situación muy frecuente en nuestro día a día, dado que compartir trabajo, equipo de fútbol, grupo de clase con otras 24 personas, no es poco habitual. Por ejemplo, ¿hay 2 jugadores del Athletic que hayan nacido en el mismo día? Podríamos bautizarla como la “Paradoja del Athletic” 🙂

Como siempre, las matemáticas dando respuesta a situaciones de nuestro día a día.

¿Cuáles son los idiomas más influyentes en el mundo?

¿Qué hace a un idioma influyente en nuestro mundo hoy en día? ¿Es el que tiene más hablantes en el mundo? ¿El que genera un valor económico más grande? Ya anteriormente hemos hablado de todo ello, señalando como el Inglés era fundamental. También, recientemente, no son pocos los que señalan la importancia creciente del Mandarín, dado el crecimiento demográfico y económico que está viviendo China.

La novedad reciente es que un grupo de linguistas ha señalado recientemente como un idioma no es influyente o importante por sí mismo, sino en función de cómo se conecta a otros. Y en ello, también el Inglés gana.

Conexión de los idiomas en la traducción de libros, ediciones en Wikipedia y en Twitter (Fuente: https://weforum-assets-production.s3-eu-west-1.amazonaws.com/editor/6UiEOUH8GWWKGBGnd6izUwfVSPnsNRj-gp2wMcP-O6M.png)

Conexión de los idiomas en la traducción de libros, ediciones en Wikipedia y en Twitter (Fuente: https://weforum-assets-production.s3-eu-west-1.amazonaws.com/editor/6UiEOUH8GWWKGBGnd6izUwfVSPnsNRj-gp2wMcP-O6M.png)

¿Por qué la capacidad de “conexión” es relevante en esta conversación? Pues porque hoy en día, en este mundo en el que cada vez estamos más conectados, es importante que cuando escribimos un libro, editamos la Wikipedia (esa enciclopedia mundial) o cuando escribimos en Twitter, sea fácil que otros nos lean y sean capaces de traducirnos o conectarnos. Por ello, parece que la opción más elegida por los usuarios de esos tres canales de conocimiento (libros, Wikipedia y Twitter), sigue siendo el Inglés.

Después de ellos, aparecen una serie de idiomas como el Francés, el Español, el Alemán, el Ruso o el Portugués. El Chino-Mandarín aparece más tarde… seguramente derivado de las políticas que siguen en China respecto a Internet (que afectaría al uso de la Wikipedia o Twitter) o los libros. Es más, allí tienen su propio Twitter (Sina Weibo) y su propia Wikipedia (Chinese Wikipedia), algo parecido a lo que ocurre en Rusia con su propio Facebook (el VKontakte).

Por contra, otras lenguas que a priori parecerían poco influyentes, como el Malayo (en el Sudeste de Asia en países como Malasia, Thailandia, Indonesia, Brunei, etc.), Filipino (Filipinas) y Swahili (en el centro-este de África, en países como Kenya, Tanzania, Uganda, Ruanda, etc.), son bastante influyentes, dado el amplio uso de Twitter y Wikipedia en esos países y hablantes.

Una vez más, vemos como en esta era digital la importancia de los idiomas no se desvanece. Por mucho que exista Google Translator, el aprendizaje de idiomas sigue siendo fundamental. Y en ello, nos gustaría acompañaros en Academia Ukajerez, con nuestras clases de idiomas, especialmente el Inglés y el Euskera. Acércate e infórmate, it’s free 🙂